Dynamics between antibiotic drug use and resistance – An economic approach

Uwe Frank
Klaus Kaier

No. 36 – März 2009
Dynamics between antibiotic drug use and resistance –
An economic approach

Uwe Frank
Department of Environmental Health Sciences, University Medical Center Freiburg

Klaus Kaier*
Department of Environmental Health Sciences, University Medical Center Freiburg and
Research Center for Generational Contracts, Freiburg University

Abstract
In Europe, the emergence and spread of antibiotic resistance (AMR) has become a serious public health threat. Rational antibiotic policy, combined with enforcement of infection control practices are key strategies to combat AMR in the hospital setting. Using time-series analysis, we calculated potential savings resulting from changes in prescribing behaviour and improved compliance with hand hygiene. According to our calculations, a saving of 14 € would be achieved by reducing use of third-generation cephalosporins by one defined daily dose and further savings of almost 60 € would be achieved by increasing hospital-wide use of alcohol-based hand rub by one litre.

Keywords: Economic model, Externality, Antibiotics use, MRSA

*Corresponding author: Kaier, Klaus; Department of Environmental Health Sciences, University Medical Center Freiburg, Breisacher Straße 115b, D-79106 Freiburg, Germany; Phone +49(0)761/270 8272, Fax +49(0)761/270 8253, Email klaus.kaier@uniklinik-freiburg.de
Introduction

In the past decades, antibiotic resistance (AMR) in pathogenic bacteria has been a growing problem both in Europe and worldwide. The race against resistance began soon after penicillin was developed. When with the emergence and spread of resistant organisms penicillin began to lose effectiveness, scientists dealt with the problem by developing methicillin, a synthetic penicillin; however, that agent, too, soon began to lose effectiveness.\(^1\) Thus, new classes of antimicrobial agents were developed to replace methicillin. Now, as development has slowed down the effectiveness of antibiotics in general is beginning to decline.\(^2;3\)

From a public health perspective, the effectiveness of antibiotic agents in hospital settings may be seen as a natural resource that is (1) protected by infection control practices implemented to prevent cross-transmission of resistant bacteria and (2) exploited by the use of antibiotics. Antibiotic use gives antibiotic-resistant bacterial strains a comparative advantage to spread, resulting in a direct correlation between the volume of antibiotic consumption and the spread of resistance in hospital settings, as 3 recent studies using time-series analysis have shown.\(^4;6\)

Studies using time-series analyses on a hospital-wide level have shown that temporal increases (decreases) in the use of some classes of antibiotics are followed by temporal increases (decreases) in the incidence of methicillin-resistant *Staphylococcus aureus* (MRSA), the most prominent multi-drug resistant pathogen. Furthermore, these studies have also shown that infection control practices such as hand disinfection are able to decrease MRSA incidence.\(^4;6\)

Loss of antibiotic activity as a direct result of antibiotic consumption can be modelled on the approach of a negative externality. According to this concept, the cost of resistance is considered to be a negative externality of antibiotic use.\(^7;8\) The study-objective was to determine the externalities of four classes of antibiotics which scientifically influence the occurrence of MRSA in hospital setting.\(^5\)

Methods

The model

The externality determines the level of the cost of resistance that is caused by use of one defined daily dose (DDD) of a selected antibiotic. Therefore, knowledge of the extent to which an antibiotic may have contributed to the emergence of resistance and what costs are incurred by which type of resistant infection is imperative.
Following existing approaches, the probability of the failure of antibiotic treatment due to a resistant organism is termed R, while the additional cost of infections caused by resistant bacteria are represented by ΔV. The impact parameter between antibiotic use and the occurrence of resistance ε is called dose-response rate of drug use – drug resistance and may be described as the percentage change in the incidence of resistance following a 1% change in the level of antibiotic use. The externality E of the use of antibiotic q is then given by

$$E_q = \varepsilon_q R_q \Delta V,$$

where the negative externality is determined by the linear relationship between antibiotic use and the occurrence of resistance ε, the probability of the acquisition of a resistant infection R and the constant costs of an infection caused by a resistant pathogen ΔV.

The data

In one of our previous studies, the impact of antibiotic use on the incidence of nosocomial MRSA infections was determined using a multivariate linear regression model. There was a positive impact for the use of second-generation cephalosporins (coeff. = 1.41, $p = 0.023$), third-generation cephalosporins (coeff. = 1.03, $p = 0.051$), fluoroquinolones (coeff. = 1.12, $p = 0.01$) and lincosamides (coeff. = 0.42, $p = 0.05$). Since logarithmically transformed variables were used in the regression, the dose-response rates ε equaled the resulting coefficients, which means that a one percent increase in third-generation cephalosporin use was followed by a 1.03 percent increase in the number of nosocomial MRSA infections. The linear assumptions made in the model made a constant dose-response relationship probable.

Results

The study was conducted at University Medical Center Freiburg, a 1600 bed tertiary care teaching hospital. During the study period (January 2003 through October 2007), the mean monthly number of episodes of nosocomial infection was identified as being 2.69. Monthly antibiotic use is shown in Table 1. The probability of treatment-failure due to a resistant organism was calculated by using the monthly number of nosocomial MRSA infections in relation to the amount of antibiotics used (\sum_{MRSA}/\sum_{DDD}; see Table 1).

Presuming that the additional cost of an MRSA-patient is significantly higher ($8198€$) than that of a non-MRSA patient, the calculations shown in Table 1 demonstrate the extent of the external cost of antibiotic consumption from promoting resistance.
Equally, equation (1) can be used to determine the positive effect of hand disinfection. Using existing data, we integrated the series of alcohol-based hand rub use into our multivariate model (coeff. = -5.37, p < 0.001). The negative coefficient estimated in the model shows the preventive impact of alcohol-based hand rub use on the incidence of MRSA. The results obtained from including alcohol-based hand rub use in equation (1) is shown in Table 1 and may be seen as the potential costs prevented by use of one litre of alcohol-based hand rub solution for hand disinfection. In other words, using only 3ml alcohol-based hand rub solution for hand disinfection, saves 0.18€ of the potential cost incurred by MRSA-related infections.

Discussion

As of yet, there are few studies demonstrating that use of antibiotics leads to indirect external costs by promoting resistance.

Although, the estimates presented here for the externality of antibiotic use are crude, they demonstrate that antibiotic consumption does from the perspective of a hospital, at least, substantially affect the cost of resistance. An externality of around 10 € per DDD is a small amount of money compared to the overall per diem cost of hospitalization, but is a significant amount compared to the direct cost of the antibiotic.

According to our calculations, a saving of approximately 14 € would be achieved by reducing use of third-generation cephalosporins by a single DDD. Increasing hospital-wide use of alcohol-based hand rub by one litre would give a saving of approximately 60 €. The emergence and spread of resistance in hospital settings is a multifactor process. Thus, prevention of AMR in the hospital can be only achieved by taking a multifactor approach in changing the major variables antibiotic use and infection control practice, especially hand hygiene. Both variables were tested in the multivariate time-series analysis.

Demonstrating the net benefit of preventing AMR may lead to changes in prescribing behaviour and increase compliance with infection control practices.
Funding

Research on health and economic impacts of antibiotic resistance by K.K. and U.F. is currently supported by the European Commission (Project BURDEN, Project commissioned by DG SANCO, Grant Agreement N° 2005203; http://www.eu-burden.info).

Transparency declarations

No conflicts of interest.

Acknowledgement

We thank Deborah Lawrie-Blum for her help in preparing the manuscript.

Reference List

Table 1: Characteristics of the parameters used for the determination of the externality

<table>
<thead>
<tr>
<th>q^a</th>
<th>Mean use of q^b</th>
<th>$R = \frac{\sum \text{MRSA}}{\sum \text{DDD}}$ c</th>
<th>ε d</th>
<th>ΔV e</th>
<th>E'</th>
</tr>
</thead>
<tbody>
<tr>
<td>second-generation cephalosporins</td>
<td>6544</td>
<td>0.0004111</td>
<td>1.41</td>
<td>8 198 €</td>
<td>4.75 €</td>
</tr>
<tr>
<td>third-generation cephalosporins</td>
<td>1627</td>
<td>0.0016534</td>
<td>1.03</td>
<td>8 198 €</td>
<td>13.96 €</td>
</tr>
<tr>
<td>fluoroquinolones</td>
<td>2352</td>
<td>0.0011437</td>
<td>1.12</td>
<td>8 198 €</td>
<td>10.50 €</td>
</tr>
<tr>
<td>lincosamides</td>
<td>840</td>
<td>0.0032024</td>
<td>0.42</td>
<td>8 198 €</td>
<td>11.03 €</td>
</tr>
<tr>
<td>alcohol-based hand rub</td>
<td>1991</td>
<td>0.0013511</td>
<td>-5.37</td>
<td>8 198 €</td>
<td>-59.45 €9</td>
</tr>
</tbody>
</table>

aUses of antibiotics and alcohol-based hand rub solution as included in the multivariate analysis.
bMonthly amounts of antibiotic use (in DDD) and alcohol-based hand rub use (in litres) during the study period (01/2003 – 10/2007).
cThe probability of the acquisition of a resistant infection.
dDose-response rate of drug use – drug resistance as determined in the multivariate analysis.
eThe additional costs of an Infection due to MRSA according to a recent study in 11 German hospitals.10
fThe externality E of the use of one unit of q according to equation $E_q = \varepsilon_q R_q \Delta V$.
gThe externality of alcohol-based hand rub use may be seen as potential costs prevented by one litre of alcohol-based hand rub use for hand disinfection.
Seit 2005 erschienene Beiträge

No. 1 Christian Hagist/ Norbert Klusen/ Andreas Plate/ Bernd Raffelhüschen
Social Health Insurance – the major driver of unsustainable fiscal policy?

No. 2 Stefan Fetzer/ Bernd Raffelhüschen/ Lara Slawik
Wie viel Gesundheit wollen wir uns eigentlich leisten?

No. 3 Oliver Ehrentraut/ Matthias Heidler/ Bernd Raffelhüschen
En route to sustainability: history, status quo, and future reforms of the German public pension scheme?

No. 4 Jasmin Häcker/ Bernd Raffelhüschen
Die Interne Rendite der Gesetzlichen Pflegeversicherung

No. 5 Jasmin Häcker/ Bernd Raffelhüschen
Internal Rates of Return of the German Statutory Long-Term Care Insurance
(Englische Fassung von Diskussionsbeitrag No. 4)

No. 6 Matthias Heidler/ Bernd Raffelhüschen
How risky is the German Pension System? The Volatility of the Internal Rates of Return

No. 7 Laurence J. Kotlikoff/ Christian Hagist
Who’s going broke? Comparing Growth in Healthcare Costs in Ten OECD Countries

No. 8 Jasmin Häcker
Dynamisierung der Pflegeleistungen: Vergangenheit – Gegenwart – Zukunft

No. 9 Dirk Mevis/ Olaf Weddige
Gefahr erkannt – Gefahr gebannt? Nachhaltigkeitsbilanz der 15. Legislaturperiode des deutschen Bundestages 2002-2005

No. 10 Daniel Besendorfer/ Emily Phuong Dang/ Bernd Raffelhüschen
Die Schulden und Versorgungsverpflichtungen der Länder: Was ist und was kommt

No. 11 Jasmin Häcker/ Bernd Raffelhüschen
Zukünftige Pflege ohne Familie: Konsequenzen des „Heimsog-Effekts“

No. 12 Christian Hagist/ Bernd Raffelhüschen/ Olaf Weddige
Brandmelder der Zukunft – Die Generationenbilanz 2004

No. 13 Matthias Heidler/ Arne Leifels/ Bernd Raffelhüschen
Heterogenous life expectancy, adverse selection, and retirement behavior

No. 14 Pascal Krimmer/ Bernd Raffelhüschen
Grundsicherung in Deutschland - Analyse und Reformbedarf

No. 15 Ulrich Benz/ Christian Hagist
Konjunktur und Generationenbilanz – eine Analyse anhand des HP-Filters

No. 16 Jasmin Häcker/ Birgit König/ Bernd Raffelhüschen/ Matthias Wernicke/ Jürgen Wettke
Effizienzreserven in der stationären Pflege in Deutschland: Versuch einer Quantifizierung und Implikationen für die Reform der Gesetzlichen Pflegeversicherung

No. 17 Christian Hagist/ Matthias Heidler/ Bernd Raffelhüschen/ Jörg Schoder
Brandmelder der Zukunft – Die Generationenbilanz Update 2007: Demografie trifft Konjunktur

No. 18 Lukas Mangelsdorf
Die Geldsteuer: Vorschlag für eine radikal einfache Steuer

No. 19 Jasmin Häcker/ Tobias Hackmann/ Stefan Moog
Demenzkranke und Pflegebedürftige in der Sozialen Pflegeversicherung – Ein intertemporaler Kostenvergleich

No. 20 Oliver Ehrentraut/ Matthias Heidler
Demografisches Risiko für die Staatsfinanzen? – Koordinierte Bevölkerungsvorausberechnungen im Vergleich
No. 21 Oliver Ehrentraut/ Matthias Heidler
Zur Nachhaltigkeit der GRV – Status quo, Potenziale und Risiken

No. 22 Ulrich Benz/ Christian Hagist
Konjunktur und Generationenbilanz – eine Analyse anhand des HP-Filters

No. 23 Ulrich Benz/ Christian Hagist
Technischer Anhang zu „Konjunktur und Generationenbilanz – eine Analyse anhand des HP-Filters“

No. 24 Veronika Deeg/ Christian Hagist
The Fiscal Outlook in Austria – An Evaluation with Generational Accounts

No. 25 Oliver Ehrentraut/ Bernd Raffelhüschen
Demografischer Wandel und Betriebsrenten – Zur Berücksichtigung der Langlebigkeit bei der Anpassung von Direktzusagen

No. 26 Tobias Hackmann/ Stefan Moog
Älter gleich kranker? Auswirkungen des Zugewinns an Lebenserwartung auf die Pflegewahrscheinlichkeit

No. 27 Klaus Kaier/ Christian Hagist/ Uwe Frank/ Elisabeth Meyer
Antimicrobial drug use, alcohol-based hand disinfection and the burden of methicillin-resistant Staphylococcus aureus – A time series approach at a German University Medical Center

No. 28 Jasmin Häcker/ Tobias Hackmann/ Thorsten Henne
Sozialgesetzgebung und Beihilfeverordnungen: Ein Leistungsvergleich von Versicherten der Sozialen Pflegeversicherung und Beamten im Pflegefall

No. 29 Stefan Moog
MacSim: Ein Simulationsmodell zur Analyse der gesamtwirtschaftlichen Auswirkungen der demografischen Entwicklung in Deutschland

No. 30 Christian Hagist/ Stefan Moog/ Bernd Raffelhüschen
Ehrbarer Staat? Die Generationenbilanz – Update 2008: Migration und Nachhaltigkeit

No. 31 Klaus Kaier/ Uwe Frank/ Christian Hagist/ Elisabeth Meyer
The impact of antimicrobial drug consumption and alcohol-based hand rub use on the emergence and spread of extended-spectrum β-lactamase (ESBL)-producing strains – A time series analysis

No. 32 Friedrich Fichtner/ Christian Hagist
Oil and Intergenerational Redistribution – The case of Norway

No. 33 Tobias Hackmann/ Stefan Moog
Pflege im Spannungsfeld von Angebot und Nachfrage

No. 34 Christian Hagist/ Stefan Moog/ Bernd Raffelhüschen/ Johannes Vatter
Ehrbare Staaten? Die Ergebnisse der Generationenbilanzierung im internationalen Vergleich

No. 35 Christian Hagist/ Johannes Vatter
Measuring Fiscal Sustainability on the Municipal Level: A German Case Study

No. 36 Uwe Frank/ Klaus Kaier
Dynamics between antibiotic drug use and resistance – An economic approach